
Copyright© 2016 KRvW Associates, LLC

Ken van Wyk, ken@krvw.com, @KRvW

Break ‘em and Build ‘em Web
SecAppDev 2016
Ken van Wyk, @KRvW

Leuven, Belgium
7-11 March 2016

Copyright© 2016 KRvW Associates, LLC

Part I - Break ‘em!

2

Copyright© 2016 KRvW Associates, LLC

Module flow

Description of the flaw and how it is exploited
Exercise to attack the flaw (for most)
– We’ll let you try to figure each exercise out yourself
– Then instructor will demonstrate the attack
Discussion about mitigation steps
– Mostly as they concern application layers
– How does each mitigation fit into dev process

3

Copyright© 2016 KRvW Associates, LLC

The tools we’ll use

OWASP tools (freely available)
– Firefox web browser

lWith FoxyProxy plug-in

– WebScarab -- a web application testing proxy
lZAP is also installed in our VM

– WebGoat -- a simple web application containing
numerous flaws and exercises to exploit them
lRuns on (included) Apache Tomcat JavaEE server

4

Copyright© 2016 KRvW Associates, LLC

Setting up your virtual machine

Install VirtualBox on your system from the USB or
download provided
– You will need administrative privileges to install it if it

isn’t already there
From the File menu, import the appliance prepared
for this class
– You may need to adjust the memory allocated for the VM

(default is 2 Gb)
– You may need to tweak network settings and/or graphics

hardware settings — like 3D and 2D acceleration

5

Copyright© 2016 KRvW Associates, LLC

Setting up WebGoat

We’ll boot from the provided Virtual Machine
–Class software pre-installed, but run from command line

lFirst cd into ~/Desktop/WebGoat

–To compile and run, type -
l./build-and-run-webgoat.sh

–Launch Firefox and point to server from
bookmark
lhttp://localhost:8080/WebGoat/attack

At this point, WebGoat is running, but you’ll still
need a testing proxy to perform some attacks

6

Copyright© 2016 KRvW Associates, LLC

Next, set up WebScarab

Run WebScarab
– Default listener runs on TCP port 8008
– Ensure listener is running within WebScarab
Configure proxy
– Use FoxyProxy in Firefox and select WebScarab

lThis configures browser to proxy traffic on TCP/8008 on 127.0.0.1
(localhost)

– Connect once again to http://localhost:8080/WebGoat/
attack

7

Copyright© 2016 KRvW Associates, LLC

WebGoat tips

Report card shows overall progress
Don’t be afraid to use the “hints” button
– Show cookies and parameters can also help
– Show java also helpful
– None of these are typical on real apps…
Learn how to use it
Fabulous learning tool

8

Copyright© 2016 KRvW Associates, LLC

Familiarizing Goat and Scarab

WebGoat
– Do “Web Basics”

exercise
– Try Hints and other

buttons
– Look at report card

WebScarab
– Turn on intercepts

lRequests
lResponses

– Explore and experiment
lParsed vs. raw view

– Try editing a request
lModify parameters
lAdd/omit parameters

9

Copyright© 2016 KRvW Associates, LLC

A word of warning on ethics

You will see, learn, and perform real attacks against
a web application today.
You may only do this on applications where you
are authorized (like today’s class).
Violating this is a breach of law in most countries.
Never cross that ethical “line in the sand”!

10

Copyright© 2016 KRvW Associates, LLC

OWASP Top-10 (2013)

A1 - Injection
A2 - Broken
authentication and
session management
A3 - Cross-site scripting
A4 - Insecure direct
object reference
A5 - Security
misconfiguration

A6 - Sensitive data
exposure
A7 - Missing function
level access control
A8- Cross site request
forgery (CSRF)  
A9 - Using components
with known
vulnerabilities
A10 - Unvalidated
redirects and forwards

11

Copyright© 2016 KRvW Associates, LLC

#1 Injection flaws

Occurs when
“poisonous” data causes
software to misbehave
Most common is SQL
injection
–Attacker taints input data

with SQL statement
–SQL passes to SQL

interpreter and runs
–Data “jumps” from data

context to SQL context

Consider the following
input to an HTML form
–Form field fills in a

variable called
“CreditCardNum”

–Attacker enters
l ‘
l ‘ --
l ‘ or 1=1 --

–What happens next?

12

Copyright© 2016 KRvW Associates, LLC

SQL string injection exercise

13

Copyright© 2016 KRvW Associates, LLC

SQL integer injection exercise

14

Copyright© 2016 KRvW Associates, LLC

Injection issues and remediation

Passing unchecked data
to any interpreter is
dangerous
Filtering out dangerous
data alone can be
problematic

SQL injection
remediation
– Use static strings
– Parse for provably safe

input
lNot a good idea

– Parameterized queries
lVia PreparedStatement

– Stored procedures
lSafe, but SQL engine

dependent
15

Copyright© 2016 KRvW Associates, LLC

Other injection dangers

SQL injection is
common but others
exist
– XML
– LDAP
– Command shell
– Comma delimited files
– Log files

Context is everything
– Must be shielded from

presentation layer
Input validation will
set you free
– Positive validation is

vital

16

Copyright© 2016 KRvW Associates, LLC

Log spoofing exercise

17

Copyright© 2016 KRvW Associates, LLC

Code

Use DAO for as many
interfaces as possible
When not feasible,
using safe code
patterns
– PreparedStatement

Code reviews should
verify conformance
– Consider tools with

custom rule sets

18

Copyright© 2016 KRvW Associates, LLC

Examples – How NOT to…

//Make connection to DB
Connection connection = DriverManager.getConnection(DataURL, LOGIN,
PASSWORD);

String Username = request.getParameter("USER"); // From HTTP request
String Password = request.getParameter("PASSWORD"); // same

int iUserID = -1;
String sLoggedUser = "";

String sel = "SELECT User_id, Username FROM USERS WHERE Username =
'" +Username + "' AND Password = '" + Password + "'";

Statement selectStatement = connection.createStatement ();
ResultSet resultSet = selectStatement.executeQuery(sel);

19

Copyright© 2016 KRvW Associates, LLC

Examples – PreparedStatement

String firstname = req.getParameter("firstname");
String lastname = req.getParameter("lastname");

String query = "SELECT id, firstname, lastname FROM authors
WHERE forename = ? and surname = ?";
PreparedStatement pstmt = connection.prepareStatement(query);
pstmt.setString(1, firstname);
pstmt.setString(2, lastname);
try
{
 ResultSet results = pstmt.execute();
}

20

Copyright© 2016 KRvW Associates, LLC

Examples – Stored Procedure

String userID = request.getParameter("userID");
String pwd = request.getParameter("pwd");
try {
 CallableStatement cs =
connection.prepareCall("{call sp_getUser(?,?)}");
 cs.setString(1, userID);
 cs.setString(2, pwd);
 ResultSet rs = cs.executeQuery();
…

21

Copyright© 2016 KRvW Associates, LLC

#2 Broken authentication and
session management

HTTP has no inherent
session management
– And only rudimentary

authentication
Every developer has to
invent (or reuse) one

Mistakes are common
– Credentials transmitted

unencrypted
– Stored unsafely
– Passed in GET (vs.

POST)
– Session cookies revealed

or guessable

22

Copyright© 2016 KRvW Associates, LLC

Authentication basics

Identification first
– Typically, username
Authentication factors
– Something you know
– Something you have
– Something you are
Passwords
– Ubiquitous, but bad

Multi-factor
– Token (hardware or

software)
Biometric
Text message out-of-
band
– Challenge/response
– Notifications, etc.,

becoming common

23

Copyright© 2016 KRvW Associates, LLC

Authentication pitfalls

Credential exposure
– Replay, man-in-the-

middle possible
Failing to use multi-
factor
– SMS model is pretty

good

Injection susceptible
server
– LDAP, XML, SQL
– Positive validation

essential

24

Copyright© 2016 KRvW Associates, LLC

Spoofing auth cookie exercise

25

Copyright© 2016 KRvW Associates, LLC

Session management basics

Web contains no
inherent session
management
Unique ID assigned to
each session on server
ID passed to browser
and returned in each
GET/POST
– JSESSIONID for J2EE

Once authenticated,
session token is as
powerful as valid
username/password
Must be rigorously
protected
– Confidential
– Random
– Unpredictable
– Unforgeable

26

Copyright© 2016 KRvW Associates, LLC

A word about setting cookies

Set-Cookie: name=VALUE; domain=DOMAIN_NAME;
expires=DATE; path=/PATH/; secure; httponly

Set via HTTP headers
Only name field is required
Secure attribute instructs client to SSL encrypt
– RFC 2965 still allows the client significant leeway
– No guarantee for confidentiality, but still a good practice
Httponly attribute prevents scripts from accessing
cookie (e.g., Javascript in XSS attacks)

27

Copyright© 2016 KRvW Associates, LLC

Session management pitfalls

Exposing session token
Session fixation
Custom tokens

Not resetting session
token
Session hijacking and
replay
CSRF susceptible

28

Copyright© 2016 KRvW Associates, LLC

Session management issues

Session time-out
– Inactivity
– Absolute
Logout button
– Same place on every

page

Protecting high value
functions/pages
Referrer checking

29

Copyright© 2016 KRvW Associates, LLC

Resetting a session

public static HttpSession
resetSessionId(HttpSession session,
 HttpServletRequest request) {
 session.invalidate();
 session = request.getSession(true);
 return session;
}

30

Copyright© 2016 KRvW Associates, LLC

Session fixation

31

Copyright© 2016 KRvW Associates, LLC

Examples – Flawed logic flow

bAuthenticated := true
try {
 userrecord := fetch_record(username);
 if userrecord[username].password != sPassword then
 bAuthenticated := false
 end if;
 if userrecord[username].locked == true then
 bAuthenticated := false
 end if
 …
}
catch {
 // perform exception handling, but continue
}

32

Copyright© 2016 KRvW Associates, LLC

Examples – Better logic flow
bAuthenticated := false
securityRole := null
try {
 userrecord := fetch_record(username)
 if userrecord[username].password != sPassword then
 throw noAuthentication
 end if
 if userrecord[username].locked == true then
 throw noAuthentication
 end if
 if userrecord[username].securityRole == null or banned then
 throw noAuthentication
 end if
…
 bAuthenticated := true
 securityRole := userrecord[username].securityRole
}
catch {
 bAuthenticated := false
 securityRole := null
 // perform error handling, and stop
}

33

Copyright© 2016 KRvW Associates, LLC

Examples – Filtering username
public static bool isUsernameValid(string username) {
 RegEx r = new Regex(“^[A-Za-z0-9]{16}$”);
 return r.isMatch(username);
}

// java.sql.Connection conn is set elsewhere for brevity.

PreparedStatement ps = null;
RecordSet rs = null;

try {
 isUsernameValid(pUsername);
 ps = conn.prepareStatement(“SELECT * FROM user_table WHERE username = ‘?’”);
 ps.setString(1, pUsername);
 rs = ps.execute();
 if (rs.next()) {
 // do the work of making the user record active in some way
 }
}

catch (…) {
…

34

Copyright© 2016 KRvW Associates, LLC

#3 Cross site scripting (“XSS”)

Can occur whenever a
user can enter data into
a web app
– Consider all the ways a

user can get data to the
app

When data is
represented in browser,
“data” can be
dangerous

Consider this user
input

<script>
alert(document.cookie)
</script>

– Where can it happen?
– ANY data input

Two forms of XSS
– Stored XSS
– Reflected XSS

35

Copyright© 2016 KRvW Associates, LLC

Stored XSS

Attacker inputs script
data on web app
– Forums, “Contact Us”

pages are prime
examples

– All data input must be
considered

Victim accidentally
views data
– Forum message, user

profile, database field
Can be years later
– Malicious payload lies

patiently in wait
– Victim can be anywhere

36

Copyright© 2016 KRvW Associates, LLC

Stored XSS exercise

37

Copyright© 2016 KRvW Associates, LLC

Reflected XSS

Attacker inserts script
data into web app
App immediately
“reflects” data back
– Search engines prime

example
– “String not found”

Generally combined
with other delivery
mechanisms
– HTML formatted spam

most likely
– Image tags containing

search string as HTML
parameter
lConsider width=0 height=0

IMG SRC

38

Copyright© 2016 KRvW Associates, LLC

Reflected XSS exercise

39

Copyright© 2016 KRvW Associates, LLC

XSS remediation

Multi-tiered approach
– Input validation
– Output encoding

(“escaping”)

But how?
– It’s not so simple
– Blocking “<>”,

“<script>”, etc. can lead
to disaster

Strive for positive
input validation, not
negative
– Prove something is safe
Beware of
internationalization
Every single input
– Database import, XML

data, the list goes on and
on

40

Copyright© 2016 KRvW Associates, LLC

Presentation layer input validation

Client-side (Javascript)
input validation
– Trivially bypassed
– Not a suitable security

control by itself
– Good for usability

App server validation
– XML config files
Regular expression
processing to verify
fields
– Positive validation
Instant feedback to user

41

Copyright© 2016 KRvW Associates, LLC

Key concept

In a business application,
if we are attacked
– Block the attack
– Know that we’re under

attack and alert the good
guys

– Take evasive action
Where should this
happen?
– Business logic, of course

42

Copyright© 2016 KRvW Associates, LLC

Examples - Javascript

// XSS filter code. takes out coding characters and returns the rest
function emitSpclChr(nameStrng){
 for(j=0;j<nameStrng.length;j++){
 thisChar = nameStrng.charAt(j);
 if(thisChar=="<" || thisChar==">" || thisChar=="?" ||
thisChar=="*" || thisChar=="(" || thisChar==")"){
 nameStrng=nameStrng.replace(thisChar,"");
 j=j-1;
 }
 }
 return (nameStrng);
 }
//end XSS

43

Copyright© 2016 KRvW Associates, LLC

Examples - Javascript
<SCRIPT>
regex1=/^[a-z]{3}$/;
regex2=/^[0-9]{3}$/;
regex3=/^[a-zA-Z0-9]*$/;
regex4=/^(one|two|three|four|five|six|seven|eight|nine)$/;
regex5=/^\d{5}$/;
regex6=/^\d{5}(-\d{4})?$/;
regex7=/^[2-9]\d{2}-?\d{3}-?\d{4}$/;
function validate() {
msg='JavaScript found form errors'; err=0;
if (!regex1.test(document.form.field1.value)) {err+=1; msg+='\n bad field1';}
if (!regex2.test(document.form.field2.value)) {err+=1; msg+='\n bad field2';}
if (!regex3.test(document.form.field3.value)) {err+=1; msg+='\n bad field3';}
if (!regex4.test(document.form.field4.value)) {err+=1; msg+='\n bad field4';}
if (!regex5.test(document.form.field5.value)) {err+=1; msg+='\n bad field5';}
if (!regex6.test(document.form.field6.value)) {err+=1; msg+='\n bad field6';}
if (!regex7.test(document.form.field7.value)) {err+=1; msg+='\n bad field7';}
if (err > 0) alert(msg);
else document.form.submit();
}
</SCRIPT>

44

Copyright© 2016 KRvW Associates, LLC

Business logic layer input
validation

Java regular expression processing
– Positive validation
Most popular frameworks have validators
– Numerous data types
Good idea to keep regex list in properties files for
maintenance

45

Copyright© 2016 KRvW Associates, LLC

Examples – What’s wrong here?

public boolean validate(HttpServletRequest request, String
parameterName) {
 boolean result = false;  
String parameterValue = null;
 parameterValue =
request.getParameter(parameterName);
if(parameterValue != null &&
parameterValue.indexOf(“<script”) != -1) {  
result = true; 
}
 return result; 
}

46

Copyright© 2016 KRvW Associates, LLC

Examples – A bit better

private static final Pattern zipPattern = Pattern.compile("^\d{5}(-\d{4})?$");
 public void doPost(HttpServletRequest request, HttpServletResponse
response) {
 try {
 String zipCode = request.getParameter("zip");
 if (!zipPattern.matcher(zipCode).matches() {
 throw new YourValidationException("Improper
zipcode format.");
 }
 .. do what you want here, after its been validated ..
 } catch(YourValidationException e) {
 response.sendError(response.SC_BAD_REQUEST,
e.getMessage());
 }
 }

47

Copyright© 2016 KRvW Associates, LLC

Output encoding

Necessary for safely
outputting untrusted
data
Context is vital to
understand
– HTML
– Javascript
– CSS
– etc

Encoding scheme
needs to match context
of output stream
Build/acquire an output
encoding library
– Different data types

48

Copyright© 2016 KRvW Associates, LLC

Examples – HTML escape

Context
<body> UNTRUSTED DATA HERE </body>
<div> UNTRUSTED DATA HERE </div>
 other normal HTML elements

String safe =
ESAPI.encoder().encodeForHTML(request.getPara
meter(“input”));

49

Copyright© 2016 KRvW Associates, LLC

#4 Insecure direct object reference

Architectural flaw in
application
Giving user access to a
real world object is
dangerous
– Absolutely will be

tampered
– Results can have major

impact

Examples include
– Files
– User credentials
– Payment information
– Sensitive application

data or functions

50

Copyright© 2016 KRvW Associates, LLC

Object reference exercise

51

Copyright© 2016 KRvW Associates, LLC

Shopping cart direct object

52

Copyright© 2016 KRvW Associates, LLC

Object reference issues

Map objects in server
code
Many web apps use
presentation layer
security to “hide”
sensitive functions
– This approach is doomed

to failure

Strive for a positive
input validation
whenever possible
– Map exposed names to

system objects on the
server

– Discard all others
OS-layer data access
control and
compartmentalization
also highly useful

53

Copyright© 2016 KRvW Associates, LLC

#5 Security misconfiguration

Weakness in
underlying components
– Server, OS, framework,

etc.
Can be just as
damaging as a direct
application weakness
– Attackers don’t care

where a weakness is

Can be easier for an
attacker to find
– General, not specific to

your app
– Many are published
Can be easier to defend
against also
– IDS signatures, firewall

rules

54

Copyright© 2016 KRvW Associates, LLC

Defenses

Rigorous infrastructure
testing
– Penetration testing works

well for this
Keep up with
published reports
– IT Security should be

watching for these

Find the holes before
the attacker does
Testbeds as well as
production
Many products
available to assist here

55

Copyright© 2016 KRvW Associates, LLC

#6 Sensitive data exposure

Business software
routinely processes
sensitive data
– Payment information
– Customer information
– Proprietary data
– Application management

data

Potential exposures
abound
– Failure to encrypt in

transit
– Failure to encrypt stored

data
– Poor crypto choices

56

Copyright© 2016 KRvW Associates, LLC

Safe crypto usage

Crypto is a powerful tool for protecting data, but it
is commonly misused in unsafe ways
Problems abound
– Key management
– Poorly chosen keys
– Inadequate algorithms
Remember “encoding” is not the same as
“encrypting”

57

Copyright© 2016 KRvW Associates, LLC

Encoding exercise

58

Copyright© 2016 KRvW Associates, LLC

Crypto issues

Sensitive data must be
protected in transit and
at rest
Protection should be
proportional to the
value of the data
Some tips
– Store keys in safe place
– Use strong keys that are

not easily guessed

– Use strong algorithms
– Avoid re-using keys

Pretty basic, so why
are so many mistakes
made?

59

Copyright© 2016 KRvW Associates, LLC

Insecure transport layer

This is the “in transit”
portion of insecure
crypto
Key management is
biggest problem

Exchanging keys
securely is where many
mistakes made
Information in URL
field is subject to
disclosure

60

Copyright© 2016 KRvW Associates, LLC

Insecure comms issues

Issues are similar to
other crypto issues
Key management is the
big issue in crypto

Mutual authentication
is highly advisable
– SSL certificates on both

sides
– Not always feasible
– Consider Wi-Fi model

61

Copyright© 2016 KRvW Associates, LLC

#7 Missing function level access
control

Many web apps lack
even the most
rudimentary access
control
– if authenticated then…is

NOT access control
– Attackers are often times

able to navigate to
sensitive data/functions

Potential exposures abound
– Non-privileged user

accesses privileged
functions or data

– Data leakage across
administrative
boundaries

62

Copyright© 2016 KRvW Associates, LLC

Access to URLs via “forced
browsing”

Access to URLs is most basic presentation layer
control
Attackers only need a browser to guess URLs
Admin functions commonly “hidden” this way
“Forced browsing” attacks are pervasive and easy
to automate

63

Copyright© 2016 KRvW Associates, LLC

URL access exercise

64

Copyright© 2016 KRvW Associates, LLC

URL access issues

Expect attackers to
“spider” through your
application’s folder/
function tree
Expect attackers to
experiment with
HTML parameters via
GET and POST
Presentation layer
security is not
sufficient

J2EE and .NET are a
big help here

65

Copyright© 2016 KRvW Associates, LLC

Access control fundamentals

Question every action
– Is the user allowed to

access this
lFile
lFunction
lData
lEtc.

By role or by user
– Complexity issues
– Maintainability issues
– Creeping exceptions

66

Copyright© 2016 KRvW Associates, LLC

Role-based access control

Must be planned
carefully
Clear definitions of
– Users
– Objects
– Functions
– Roles
– Privileges

Plan for growth
Even when done well,
exceptions will happen

67

Copyright© 2016 KRvW Associates, LLC

Access control matrix

68

Copyright© 2016 KRvW Associates, LLC

Java RBAC using Shiro

//get the current Subject
Subject currentUser =
 SecurityUtils.getSubject();

if (currentUser.hasRole(“administrator”)) {
 // Business logic goes here
} else {
 // Security logic goes here
}

69

Copyright© 2016 KRvW Associates, LLC

OWASP’s ESAPI

70

Copyright© 2016 KRvW Associates, LLC

ESAPI access control

71

Copyright© 2016 KRvW Associates, LLC

ESAPI object references

72

Copyright© 2016 KRvW Associates, LLC

ESAPI access control
In the presentation layer:

<% if (ESAPI.accessController().isAuthorizedForFunction(ADMIN_FUNCTION)) { %>
 ADMIN
 <% } else { %>
 NORMAL
 <% } %>

In the business logic layer:

try {
 ESAPI.accessController().assertAuthorizedForFunction(BUSINESS_FUNCTION);
 // execute BUSINESS_FUNCTION
 } catch (AccessControlException ace) {
 ... attack in progress
 }

73

Copyright© 2016 KRvW Associates, LLC

#8 Cross site request forgery (CSRF)

Relatively new, but
potentially disastrous
Attacker sends an
image request to victim
– During an active session

on vulnerable app
– Request may include

malicious parameters
– Response may include

session cookie

Consider if the image
request arrived via
spam email
– Emailer renders the

HTML and retrieves all
“images”

– Occurs while web
browser is open and
logged into popular
banking site

74

Copyright© 2016 KRvW Associates, LLC

CSRF exercise

75

Copyright© 2016 KRvW Associates, LLC

CSRF issues

What’s the big deal?
– can be

used to hide commands
other than images

– Session cookies often
have long timeout
periods

– Can redirect commands
elsewhere on local
network

Especially dangerous
when delivered via
email or malvertising
– While logged into high

value system

76

Copyright© 2016 KRvW Associates, LLC

CSRF remediation

OWASP says, “Applications must ensure that they
are not relying on credentials or tokens that are
automatically submitted by browsers. The only
solution is to use a custom token that the browser
will not ‘remember’ and then automatically include
with a CSRF attack.”
This requires a lot of new coding
Very few existing web apps are protected
Phishers beginning to actively use this technique

77

Copyright© 2016 KRvW Associates, LLC

App containers - Tomcat

Current versions of Apache Tomcat have built-in
filters that include CSRF protection
– See org.apache.catalina.filters.CsrfPreventionFilter

78

Copyright© 2016 KRvW Associates, LLC

CSRF Guard (from OWASP)

One solution set is freely available
Take a look at CSRF Guard
– http://www.owasp.org/index.php/

Category:OWASP_CSRFGuard_Project
– Uses a randomized token sent in a hidden HTML

parameter – NOT auto by browser
Also look at CSRF Tester
– http://www.owasp.org/index.php/

Category:OWASP_CSRFTester_Project

79

Copyright© 2016 KRvW Associates, LLC

#9 Using components with known
vulnerabilities

Application ingredient
lists often include weak
components
– Older versions with

published vulns
– Fundamentally weak

components

Applications often
“advertise” their
weaknesses
– Server headers
– Stack traces when

exceptions not handled
correctly

80

Copyright© 2016 KRvW Associates, LLC

Developers using weak code

According to OWASP,
the following two
components were
downloaded 22 million
times in 2011
– Apache CXF

Authentication Bypass
– Spring Remote Code

Execution

Updated your
OpenSSL library
lately?
– Did you go back and

rebuild all the apps you
ever built using older
versions?

How about glib?
– Same thing

81

Copyright© 2016 KRvW Associates, LLC

Remediations

The most important
factor is vigilance
– Keep up to date with

component weaknesses
and patches

– Inventory of deployed
components and versions
l Include all dependencies

– Establish and enforce
policies

Can’t avoid vulnerable
component
– Remove the weak

functions
lRemember to update when

using new version

– Wrappers to disable
unused or weak
functions

82

Copyright© 2016 KRvW Associates, LLC

#10 Unvalidated Redirects and
Forwards

Pages that take users to
other URLs can be
duped
– Users think site is

trustworthy
– Comes from your

domain
– foo.com/redir.php?

url=www.evil.com

Unchecked, can be
used to send users to
malicious sites
– Malware launchpads
Target-rich
environment for
phishers

83

Copyright© 2016 KRvW Associates, LLC

Am I vulnerable?

Review code for
redirects or forwards
– If target URL is a

parameter, ensure
positive validation

Spider through site and
look for redirect
responses
– Response code 300-307

(esp 302)

Fuzz test redirectors if
code isn’t available

84

Copyright© 2016 KRvW Associates, LLC

Better still

Avoid using redirects and forwards entirely
If you must, don’t rely on user parameters
If parameters are essential, don’t rely on what the
user inputs
– Positive input validation
ESAPI has a method for checking
– sendRedirect()

85

Copyright© 2016 KRvW Associates, LLC

Information leakage and improper
error handling

Information can “leak”
from an application
many ways
– “Hidden fields”
– File/folder naming
– Badly handled errors

Consider other code
quality issues as well
– Comment fields
– “Secrets” hard coded

into code

86

Copyright© 2016 KRvW Associates, LLC

Information leakage exercise

87

Copyright© 2016 KRvW Associates, LLC

Error handling

Errors can result from
– Malicious payload injection
– Bad (or missing!) input parameters
– Duplicate input parameters
Error handling can be problematic
– Handle every error
– Don’t give out too much information
– Fail safely

88

Copyright© 2016 KRvW Associates, LLC

Safe failure exercise

89

Copyright© 2016 KRvW Associates, LLC

Error handling issues

Error conditions should
provide user with
helpful information,
nothing more
Debugging information
should never be
included in error
messages

Graceful failure should
consider all logical
states
– Include errors of

omission
Consider Murphy’s
Law

90

Copyright© 2016 KRvW Associates, LLC

#N Client-side reliance

Ok, it’s not on the OWASP list, but it is on the
KRvW list
Data (including scripts) that go to the client can and
will be tampered with
JavaScript tampering is trivial with the help of a
tool like WebScarab

91

Copyright© 2016 KRvW Associates, LLC

Client-side script exercise

92

Copyright© 2016 KRvW Associates, LLC

Client-side issues

Never rely on data
from the client
If data must pass to the
client and back, then it
should be protected
and then validated
– So why pass it?

Keep sensitive data on
the server
– Session management
– Customer data
Use client-side scripts
to help the user
– If you validate data, then

it must be validated
again on server

93

Copyright© 2016 KRvW Associates, LLC

#N+1 Quality concerns

Quality issues can
manifest as security
problems
Classic J2EE problem
with re-entrant servlets
– Class variables can

change per instance
Can be maddening to
reproduce in test
environments

Flaws appear during
highest load periods
– The worst possible time

94

Copyright© 2016 KRvW Associates, LLC

Concurrency exercise

95

Copyright© 2016 KRvW Associates, LLC

Concurrency issues

Be careful with class and instance variables
– Declare final
Use serial blocks sparingly
– Performance bottleneck
Look for flaws during high load testing
– Not easy
– Requires significant test harness

96

Copyright© 2016 KRvW Associates, LLC

Key concepts to never forget

Here are a few tips
– Attitude

lPositive vs. negative validation

– Know your data
lReally know it

– Know your business
lNot everything is a tech

problem

– Avoid quick and easy fixes
lNo free lunches here

97

Copyright© 2016 KRvW Associates, LLC

Part II - Fix ‘em!

98

Copyright© 2016 KRvW Associates, LLC

WebGoat Dev Labs

99

Copyright© 2016 KRvW Associates, LLC

Lab agenda

We’ll do three hands-on labs
– XSS remediation
– SQL injection prevention
– Role-based access control

100

Copyright© 2016 KRvW Associates, LLC

Some background

Let’s explore the WebGoat architecture a bit first

101

Copyright© 2016 KRvW Associates, LLC

WebGoat architecture overview

All labs use a custom Action Handler that is
invoked from the main WebGoat servlet,
HammerHead.java
The handler will execute their business logic, load
the data into the WebSession object, and then turn
control over to the view component (JSP)
The WebGoat presentation only allows for a lesson
to write into the Lesson Content portion of each
page

102

Copyright© 2016 KRvW Associates, LLC

WebGoat architecture

103

Copyright© 2016 KRvW Associates, LLC

WebGoat page layout

104

Copyright© 2016 KRvW Associates, LLC

Code layout

Each lab’s action handlers are in a folder with same
name
– RoleBasedAccessControl lab is in

lorg.owasp.webgoat.lessons.RoleBasedAccessControl

– Various java classes for each lab function
– Let’s explore on disk a bit

lHint: Tab file completion is your friend

105

Copyright© 2016 KRvW Associates, LLC

JSP layout

All the JSPs are in
– Resources tree
– Again, let’s explore on disk
Hint: only one lab requires modifying any JSPs

106

Copyright© 2016 KRvW Associates, LLC

Access control policy

107

Copyright© 2016 KRvW Associates, LLC

Database schema

108

Copyright© 2016 KRvW Associates, LLC

Org chart for Goat Hills Financial

109

Copyright© 2016 KRvW Associates, LLC

Lab 1: Cross-Site Scripting

110

Copyright© 2016 KRvW Associates, LLC

Lab overview

Six stages
– Stored XSS attack
– Positive input validation using regex
– Stored XSS attack redux
– Output encoding
– Reflected XSS attack
– Positive input validation using regex

111

Copyright© 2016 KRvW Associates, LLC

Stage 1

Login as “Tom”
Plant and execute a stored XSS attack on the Street
field of the Edit Profile page
Verify “Jerry” is affected
Hint: All passwords are the users’ first names in
lowercase
– Note to self: don’t use first name as password

112

Copyright© 2016 KRvW Associates, LLC

Stage 2

Block the XSS input using positive input validation
Hints
– Start by looking in UpdateProfile action handler

lSee request.getParameter calls in parseEmployeeProfile

– Java.util.regex is your friend
Try it, then we’ll step through the solution

113

Copyright© 2016 KRvW Associates, LLC

Stage 3

Login as “David” and view “Bruce’s” profile
– There’s an XSS attack already in Bruce’s data
Think that’ll get caught by the input validator?

114

Copyright© 2016 KRvW Associates, LLC

Stage 4

Since it’s too late for input validation, fix this one
using output encoding
Hints
– Look at output in JSP
– htmlEncoder class in org.owasp.webgoat.util

115

Copyright© 2016 KRvW Associates, LLC

Stage 5

Login as “Larry”
Use the Search Staff page to construct a reflected
XSS attack
– How could Larry attack another employee?

116

Copyright© 2016 KRvW Associates, LLC

Stage 6

Use positive input validation to block this reflected
XSS vulnerability
Hints
– Same issues exist here re parsers and regex
– Look through FindProfile to find where the name

parameter is being input

117

Copyright© 2016 KRvW Associates, LLC

Review checklist

Things to consider when reviewing software
– Input validation on everything

lCentralized
lEasily maintained
lRegex-based

– Consistently applied

118

Copyright© 2016 KRvW Associates, LLC

Lab 2: SQL Injection

119

Copyright© 2016 KRvW Associates, LLC

Lab overview

Four stages
– Use SQL injection to login as “Neville” without a correct

password
– Block SQL injection using a parameterized query
– As “Larry,” use SQL injection to view “Neville’s” profile
– Block SQL injection

120

Copyright© 2016 KRvW Associates, LLC

Stage 1

Use a SQL string injection attack to login as the
boss, “Neville”
– WebScarab might be handy
Validate that all functions available to Neville are
accessible

121

Copyright© 2016 KRvW Associates, LLC

Stage 2

Look in Login handler
– Alter the back-end SQL call
– Change from concatenated string to parameterized query

lPreparedStatement is your friend

122

Copyright© 2016 KRvW Associates, LLC

Stage 3

Login as “Larry”
Execute a numeric SQL injection in the View
function

123

Copyright© 2016 KRvW Associates, LLC

Stage 4

This time it’s in the ViewProfile action handler
Again, use a parameterized query to prevent the
SQL injection from working

124

Copyright© 2016 KRvW Associates, LLC

Review checklist

Look through all SQL connections
Must not ever be mutable
– No user-supplied data can affect the intent
Static strings are OK

125

Copyright© 2016 KRvW Associates, LLC

Lab 3: Access control

126

Copyright© 2016 KRvW Associates, LLC

Lab overview

Four stages
– Bypass business layer access control
– Add access control using RBAC
– Bypass data layer access control
– Add access control using RBAC

127

Copyright© 2016 KRvW Associates, LLC

Stage 1

Login as “Tom”
Bypass access control in the Delete function in the
Staff List page
– Delete Tom’s profile

128

Copyright© 2016 KRvW Associates, LLC

Stage 2

Look in the handleRequest method of the
RoleBasedAccessControl handler
– How is the action protecting for authorized access?
Look at isAuthorized method (using Eclipse)
– Failures should throw UnauthorizedException()

129

Copyright© 2016 KRvW Associates, LLC

Stage 3

Login as “Tom”
Exploit weak access control to View another
employee’s profile

130

Copyright© 2016 KRvW Associates, LLC

Stage 4

Implement data layer access control to block access
to other users’ profiles
Can build control programmatically or via better
SQL
You can use the following method
– isAuthorizedForEmployee(s, userId, subjectUserID)
Be sure to throw UnauthorizedException on failure

131

Copyright© 2016 KRvW Associates, LLC

Review checklist

Look for RBAC structure (or other AC)
Look for consistent application of AC architecture
Focus review around most sensitive functions and
data

132

Copyright© 2016 KRvW Associates, LLC

Kenneth R. van Wyk
KRvW Associates, LLC

Ken@KRvW.com
http://www.KRvW.com

133

